HIGH PROTEIN, LOW CARBOHYDRATE, 100% WHEY BASED ENTERAL FORMULA IS ASSOCIATED WITH LOWER BLOOD GLUCOSE RESPONSE IN TYPE 2 DIABETES ADULT PATIENTS

AUTHORS: Maureen B. Huhmann¹, Joel M. Neutel², Sarah S. Cohen³, Juan B. Ochoa^{1,4,5}

¹Nestlé Health Science, Bridgewater, NJ; ²Orange County Research Center, Tustin, CA; ³EpiStat Institute, Ann Arbor, MI; ⁴Geisinger Medical Center, Danville, PA; ⁵University of Pittsburgh, Pittsburgh, PA

- Hyperglycemia is prevalent among critically ill patients and, similar to type 2 diabetes mellitus (T2DM), is associated with insulin resistance.
- The role of diet, particularly protein, has been insufficiently studied in this setting.
- The objective of this study was to determine if a high protein, low carbohydrate, 100% whey based enteral nutrition (EN) formula could provide better control of postprandial blood glucose relative to a high protein whey-casein based formula

METHODS

Study design, population, interventions:

- Randomized, crossover clinical trial of 12 adults (mean age 56, range 40-66; 50% male) with T2DM.
- Assessed glycemic and insulin responses following ingestion of an isocaloric amount of two EN formulas.
- Randomized to a 450 ml bolus of one of two interventions following an overnight fast on two separate days, 1 week apart.

Interventions (Table 1):

- 100% whey based: Peptamen[®] Intense VHP (1.0 kcal/ml, P 37%, C 29%, F 34%)
- Whey-casein based: Vital® HP (1.0 kcal/ml, P 35%, C 45%, F 20%)

Outcomes:

- Blood glucose and insulin concentrations were collected at 0, 10, 20, 30, 60, 90, 120, 150, 180, 210, and 240 minutes.
- No antidiabetic medication was provided during this time.

Statistical analysis:

- 17 patients were screened, 12 patients were randomized into the trial and completed it.
- Demographics and baseline measures were summarized using percentages, means, and standard deviations.
- Differences in glucose and insulin concentrations, AUCs, and insulinogenic indices were assessed using random effects model.
- AUCs were calculated using trapezoid rule.
- Insulinogenic index = (Insulin_{to} Insulint_o) / ((Glucoset_o Glucoset_o)*0.0555)

Table 1: Mac	ronutrient Profiles	
Formulas (per 450 ml)	100% whey	Whey-casein
Calories	450 kcal	450 kcal
Total Protein	42 g Enzymatically hydrolyzed whey	
Total Carbohydrate	34 g Maltodextrin, corn starch	51 g Corn maltodextrin, sugar, cellulose gel
Dietary fiber	2 g Fructooligosaccharide, inulin	0 g
Total fat	17 g MCT, fish oil, high linoleic safflower oil, soybean oil	10 g MCT, marine oil, corn oil

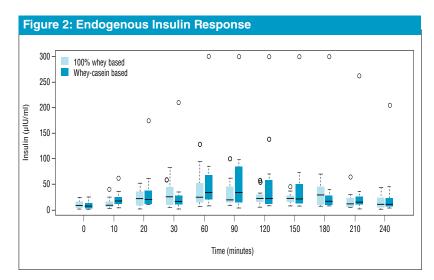
RESULTS

Blood glucose concentration:

- At baseline, the mean concentrations were not significantly different (p=0.48).
- 100% whey: 136.6±37.7 mg/dl
- Whey-casein: 129.8±29.9 mg/dl
- From baseline, significant increase at 20, 30, 60 min with 100% whey (p*<0.05, Figure 1). *Bonferroni correction
- From baseline, significant increase at 10-150 min with whey-casein (p*≤0.001, Figure 1). *Bonferroni correction
- Between formulas, significantly smaller increase with 100% whey at 10-180 min (p<0.05, Figure 1).
- At 60 min (peak), the between-group difference in change from baseline in mean glucose was 45.2 mg/dl (p=0.003).
- Significantly smaller mean AUC with experimental (p=0.025, Table 3)
- 100% whey: 1297.1±10724.0
- Whey-casein: 8155.4±6331.2
- Lower peak concentrations (C____) with 100% whey in all patients (Table 3).
- Time of $C_{max}(T_{max})$ varied depending on patients and formulas (**Table 3**).

Endogenous insulin production:

- At the baseline, the mean concentrations were not significantly different (p=0.23).
- A trend towards lower average insulin production with 100% whey at 10-240 min (p>0.1) (Figure 2).
- The mean insulinogenic indices were not significantly different (p=0.15):
- 100% whey: 10.9±12
- Whey-casein: 6.6±10.4
- The mean first-phase insulin responses (AUC 0-30 min) were not significantly different (p=0.23).
- 100% whey: 244.6±227.6
- Whey-casein: 521.5±749.3


Figure 1: Blood Glucose Concentration p-values for diff. from baseline (W) 0.267 0.049 0.009 0.047 0.275 0.395 0.584 0.722 0.158 0.041 0.000 0.000 0.000 0.000 0.000 0.001 0.148 0.900 0.574 between formulas 0.483 0.002 0.004 0.028 0.003 0.001 0.001 0.009 0.035 0.082 0.140 100% whey based (W) 250 200 = 150 -≅ 100 120 150 180 210 Time (minutes)

CONCLUSION

- This study demonstrated improved blood glucose levels in adults with T2DM following high protein, low carbohydrate, whey-based EN formula compared with a whey-casein based formula.
- This suggests a potential role of EN as a co-therapeutic for glucose management in critically ill patients with hyperglycemia.

Table 2: Demographics						
Characteristic	100% whey	N (%) or Mean±SD				
	Caucasian	6 (50%)				
Race	African American	3 (25%)				
касе	Hispanic	2 (17%)				
	Other	1 (8%)				
Sex	Female	6 (50%)				
sex	Male	6 (50%)				
Age (years)		56.0±7.5				
Height (cm)		172.3±12.8				
Weight (kg)		99.5±19.0				
BMI (kg/m²)		33.5±5.5				
	Hypertension	10 (83%)				
Comorbidities	Hyperlipidemia	8 (67%)				
	Neuropathy	1 (8%)				
	Metformin	9 (75%)				
Medication usage	Antihyperlipidemic	4 (33.3%)				
	Antihypertensive	8 (67%)				
Other drugs		7 (58%)				

	Al	x AUC		C _{max}		T _{max}	
Patient	100% whey	Whey- Casein	100% whey	Whey- Casein	100% whey	Whey Caseir	
101	9710	15540	248	253	120	90	
102	2445	5750	118	132	30	10	
103	17815	22245	230	263	150	150	
104	-27285	4585	127	189	30	30	
105	4110	4045	159	201	60	60	
106	-1040	2875	149	176	60	60	
107	-3450	3485	167	217	120	60	
108	5550	12010	167	210	90	60	
109	3050	14030	151	226	30	90	
110	5450	6785	192	210	20	150	
111	-3795	1930	184	205	30	60	
112	3005	4585	144	163	60	30	
Mean	1297.1	8155.4			66.7	70.8	
SD	10724.0	6331.2			43.6	43.6	
p-value p=0.025				P=0.	.780		

Originally presented at ESPEN Congress, 2017, The Hague, Netherlands. Sponsored by Nestlé Health Science. Nestlé® is a registered trademark of Société des Produits Nestlé S.A., Yevey, Switzerland